Facial expressions provide insight into a person’s emotional experience. There has been tremendous progress in the field of computer vision, which enables researchers to automatically decode emotional facial expressions with impressive accuracy in standardized images of prototypical basic emotions. We tested the sensitivity of a well-established automatic facial coding software program to detect spontaneous emotional reactions in individuals responding to emotional pictures. We compared automatically generated scores for valence and arousal of the Facereader (FR; Noldus Information Technology) with the current psychophysiological gold standard of measuring emotional valence (Facial Electromyography, EMG) and arousal (Skin Conductance, SC). We recorded physiological and behavioral measurements of 43 healthy participants while they looked at pleasant, unpleasant, and neutral scenes. When viewing pleasant pictures, FR Valence and EMG were both comparably sensitive. However, for unpleasant pictures, FR Valence did shows an expected negative shift, but the signal did not differentiates well between responses to neutral and unpleasant stimuli, that were distinguishable with EMG. Furthermore, FR Arousal values had a stronger correlation with self-reported valence than with arousal while SC was sensitive and specifically associated with self-reported arousal. This is the first study to systematically compare FR measurement of spontaneous emotional reactions to standardized emotional images with established psychophysiological measurement tools. This novel technology has yet to make strides to surpass the sensitivity of established psychophysiological measures. However, it provides a promising new measurement technique for non-contact assessment of emotional responses.